
Figure 1: Alphabear gameplay, https://patricktay.files.wordpress.com/2015/09/alphabear1.jpg.

Problem 1 (25 points)

Alphabear1 is a mobile game in which the player is given a series of letters, each of which has a
“timer” (see Figure 12). The player then forms a word based on the available letters, and for the
letters not chosen, the timer for those letters decreases by 1. If any letter’s timer decreases to 0,
then it will be unavailable from that point on. At the end of the game, either there are no possible
words that can be formed, or all available letters have been used. Bonuses are awarded based on
what bears the player has chosen (each has specific bonuses, such as one uses certain letters, or a
percent score increase at the end of the game). The game awards a very large bonus for being able
to clear the entire board without having any letters unavailable.

We will be writing a “partial solver” for Alphabear. We cannot create a full solver because when
letters are chosen, others appear in a random way (i.e., the characters themselves are random), so
we cannot necessarily predict what the best strategy is overall. Nevertheless, we will write a solver
for one turn in the game; as you will see, it can be extended to an arbitrary number of turns using
a loop. For this reason, we won’t be doing calculations for bonuses at the end of the game. What
we want to accomplish here is to find the “best” word at the current turn based on what is visible.

Suppose a visible letter on the board c, has a current timer value of t (we assume that the timer
is always a positive integer). Then the urgency of c is 1/t. In other words, c has higher urgency
if the timer is lower. The Alphabear game loves words that are longer, so we want our model of
what the best word is to factor this into consideration. Let x1x2 · · ·xn be an English word, and
has corresponding timer values t1, t2, · · · , tn on the board. Then the urgency of this word is:

(1/t1 + 1/t2 + · · ·+ 1/tn)× 1.1n.

The urgency of an English word, with letters x1 · · ·xn, is the sum of the urgencies of x1, x2, · · · , xn.
For example, if ahh is the considered word, and a has an timer of 1, one occurrence of h has a timer
of 2, and another occurrence of h has a timer of 7, then the urgency of ahh is (1+1/2+1/7)×1.13 ≈
2.186.

Therefore, we want to find any English word of highest urgency. We will assume that if there
are more occurrences of a given character visible than are in the considered word, the

1http://spryfox.com/our-games/alphabear/
2Yes, it is extremely adorable.

1



urgency of the word will be calculated based on the timers in sorted, increasing order.
This assumes that the player will make the “obvious” choice about which letters to pick.

Note that if we want to consider an English word, all of its letters must be usable by the board.
For instance, in the figure above, hit can be chosen (since all three letters are visible), whereas
hunt is not (assuming n is not visible anywhere else).

All English words will be provided next to this PDF on the course webpage. The file has one
English word per line (i.e., separated by a newline character). You will have to research how to
read a file line-by-line (or all at once) in C++, but a good resource is here:

https://stackoverflow.com/a/7868998/3232207.

Of course, since there are so many English words, it would be impractical to print all valid words.
So, you will proceed as follows:

� Add the file of English words to your CLion project, or to your workspace (depending on
what you use).

� cin a positive integer n from the user (this is the number of words you will print eventually).
� Read from the user (until the user enters -1) a character, along with its corresponding timer.
Note: a letter can appear any number of times here, and there is no upper limit
on how many characters will be entered. (Hint: what structure helps with doing this?).
You can assume that the user will enter everything correctly here.

� Read through the file word-by-word. (Hint: check that your program can do this first before
tackling all the other parts). You must treat the file as if it is in the same directory
as the main function (as this is how we will grade it).

� For each word, if it is compatible with the letters the user entered, then calculate its urgency.
You can loop over a std::string as follows:

string s = ...;

for (char ch : s) {

// process character ch

}

Or if you want to use an index:

string s = ...;

for (int idx=0; idx < s.length(); idx++) {

char ch = s[idx];

}

� Maintain a structure of compatible words along with their urgencies (Hint: which one would
work?).

� Output to the user a sorted list, by urgency in decreasing order, of the top n words in your
list. (If there are fewer words than n in your list, output them all).

You may use parallel arrays, but the issue comes at the last step in trying to sort across two arrays
(it is possible with some thought); or create a custom class for tying an individual character with
its urgency, and then a custom class corresponding to a word. If you do this, you may have to look
up how to define a custom comparison function for a user-defined object. Or, you can write your
own custom sorting function that handles the work for you.

As always, sprinkle your program with helpful comments throughout, as well as if you use any
functions not discussed during class.

Solution: below is the code. The high-level ideas are:

2



1. Reading a file,

2. Getting user inputs and storing them in a vector,

3. Finding some method to calculate the urgencies. Remember that the user will pick “the best”
letter if there are multiple of them. What I did was to store the letters and timers in two
vectors, and then sort the timers, while also sorting the letters. We don’t need to sort the
letters wrt the timers here because if two identical letters have the same timer, it doesn’t
matter. Crucially, when we “use” a letter, we set its value in a copy of the timers vector to
-1 (or any invalid value) so that it marks that we cannot use it again. We then just calculate
the urgency in the straightforward way.

Another way to do this is to use operator overloading (which is in the next set of slides, so
is not required), but has the disadvantage that you have to implement a class as well as the
comparison operators yourself. However, it has the advantage of being more maintainable.

4. At this point, we have urgencies along with valid words, so we do the same trick as before where
we simultaneously sort the urgencies and valid words. This time I flipped the comparison so
as to make the urgencies go in descending order.

5. Then just print the urgencies and valid words.

1 #include <algorithm >

2 #include <cmath >

3 #include <fstream >

4 #include <iostream >

5 #include <numeric >

6 #include <vector >

7
8 using namespace std;

9
10 bool is_compatible(string word_to_check , vector <char > inputted_chars

) {

11 for (char ch : word_to_check) {

12 // get the counts of each character

13 auto num_occurrences_in_word = count(word_to_check.

begin (), word_to_check.end(), ch);

14 auto num_occurrences_in_input_chars = count(

inputted_chars.begin(), inputted_chars.end(), ch)

;

15 if (num_occurrences_in_word >

num_occurrences_in_input_chars) {

16 return false;

17 }

18 }

19 return true;

20 }

21
22 int main() {

23
24 int n;

25 cin >> n;

3



26
27 vector <char > input_chars;

28 vector <int > timers;

29
30 while (true) {

31 char ch;

32 int timer;

33 cin >> ch >> timer;

34 if (timer == -1) {

35 break;

36 }

37 input_chars.push_back(ch);

38 timers.push_back(timer);

39 }

40
41 ifstream input_file("./words.txt");

42 vector <string > compatible_words;

43 string line;

44 cout << "\nReading file\n";

45 while (getline(input_file , line)) {

46 if (is_compatible(line , input_chars)) {

47 compatible_words.push_back(line);

48 }

49 }

50
51 // sort timers along with letters using bubble sort

52 bool swapped;

53 cout << "\nSwapping timers + input chars\n";

54 do {

55 swapped = false;

56 for (int ct = 0; ct < timers.size() - 1; ct++) {

57 if (timers[ct] > timers[ct + 1]) {

58 swap(timers[ct], timers[ct+1]);

59 swap(input_chars[ct], input_chars[ct+1]);

60 swapped = true;

61 }

62 }

63 } while (swapped); // Loop again if a swap occurred on this

pass.

64
65
66
67 vector <double > urgencies;

68 cout << "\nCalculating urgencies\n";

69 for (auto& word : compatible_words) {

70 double urgency = 0.0;

71 vector <int > timers_copy(timers); // so we don’t

modify the original

4



72 for (int char_idx = 0; char_idx < word.size();

char_idx ++) {

73 int idx_input = 0;

74 bool keep_going = true;

75 while (keep_going) {

76 if (word[char_idx] == input_chars[

idx_input] && timers_copy[idx_input] !=

-1) {

77 break;

78 }

79 idx_input ++;

80 }

81 // guarantee idx_in_inputs is valid because

we verified it earlier

82 auto timer_value = timers_copy[idx_input ];

83 timers_copy[idx_input] = -1; // so we don’t

use this instance of the letter again

84 urgency += (1.0/ timer_value);

85 }

86 urgency *= pow(1.1, word.size());

87 urgencies.push_back(urgency);

88 // the indices line up here , so we are good!

89 }

90
91 // sort urgencies along with valid words using bubble sort

92 cout << "\nSorting Urgencies + Valid Words\n";

93 do {

94 swapped = false;

95 for (int ct = 0; ct < urgencies.size() - 1; ct++) {

96 if (urgencies[ct] < urgencies[ct + 1]) { //

flipped here to be in ascending order

97 swap(urgencies[ct],urgencies[ct+1]);

98 swap(compatible_words[ct],

compatible_words[ct+1]);

99 swapped = true;

100 }

101 }

102 } while (swapped); // Loop again if a swap occurred.

103
104 // need the minimum of the inputted # of words and the size

of valid words

105 auto m = (compatible_words.size() > n) ? n :

compatible_words.size();

106
107 for (int i=0; i<m; i++) {

108 cout << compatible_words[i] << "," << urgencies[i]

<< "\n";

109 }

5



110
111 return 0;

112 }

6


